The Nature of Econometrics and Economic Data[Wooldridge (2013) Chapter 1 and Chapter 2 (sections 2.1 and 2.2)]

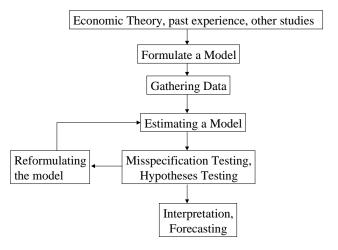
- Major uses of Econometrics
- Basic Ingredients of an empirical project
- Formulate a model (example)
- The Question of Causality
- Misspecification Testing
- Types of Data
- The Simple Regression Model
 - Introduction
 - Ordinary Least Squares (OLS)
 - Deriving OLS Estimates
 - Alternative approach to derivation
 - Some definitions

The Nature of Econometrics and Economic Data Major uses of Econometrics

- Describing Economic Reality.
- Testing hypotheses about Economic Theory.
- Forecast future economic activity.

Basic Ingredients of an empirical project

Flow chart for the Steps of an Empirical Study



Remark: This module is not about Economic Theory and gathering data.

Economic Theory suggests interesting relations between variables.

Example: Returns to education

• A model of human capital investment predicts that getting more education should lead to higher wages:

$$w = f(E)$$

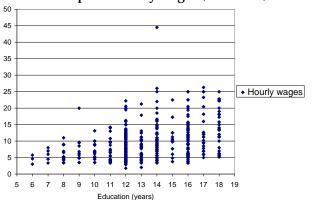
where w are the wages of a person and E are years of education of the person,

$$\frac{\partial w}{\partial E} > 0.$$

 However, let us look at a data set: US national survey of people in the labour force that already completed their education, 528 people.

The Nature of Econometrics and Economic Data Formulate a model

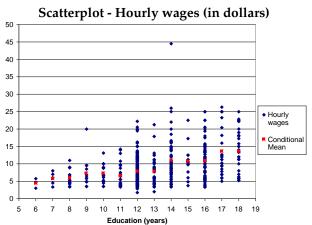
Scatterplot - Hourly wages (in dollars)



- People with the same years of education earn different hourly wages.
- There is a distribution for the hourly wages conditional on the years of education.

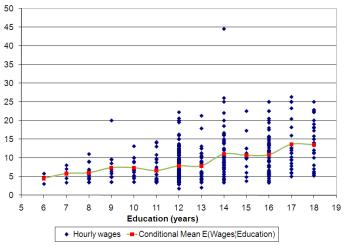
The Nature of Econometrics and Economic Data Formulate a model

- How can we study if the evidence of the data supports Economic Theory?
- A possibility is to look at means of wages conditional on the years of Education.



The Nature of Econometrics and Economic Data Formulate a model

Conditional Mean Function: Hourly Wages and Education



We can see that the mean of wages varies with the years of Education.

- Hence, the object that we are interested in studying is the mean of wages given the years of Education: *E* [*Wages*|*Education*].
- To simplify computations and the interpretation of results usually we assume a model for *E* [*Wages*|*Education*].
- A possible model for *E* [*Wages*|*Education*] is

$$E[Wages|Education] = \beta_0 + \beta_1 Education.$$

Notice that for any value a

$$E[Wages|Education = a + 1] - E[Wages|Education = a]$$

$$= \beta_0 + \beta_1 (a + 1) - \beta_0 - \beta_1 a$$

$$= \beta_0 + \beta_1 a + \beta_1 - \beta_0 - \beta_1 a$$

$$= \beta_1.$$

Hence, β_1 is the change of the expected value of *Wages* for one additional year of Education.

The Nature of Econometrics and Economic Data Formulate a model

• Equivalently, the model can be written in the more familiar way

$$Wages = \beta_0 + \beta_1 Education + u$$
,

where E[u|Education] = 0.

To see this notice that

$$Wages = E[Wages|Education] + Wages - E[Wages|Education]$$

• Let u = Wages - E[Wages|Education], therefore

$$Wages = E[Wages|Education] + u$$

= $\beta_0 + \beta_1 Education + u$,

Now notice that by construction

$$E(u|Education) = E\{Wages - E[Wages|Education] | Education\}$$

= $E[Wages|Education] - E\{E[Wages|Education] | Education\}$
= $E[Wages|Education] - E[Wages|Education]$
= 0 .

The Nature of Econometrics and Economic Data Formulate a model

$$Wages = \beta_0 + \beta_1 Education + u,$$

where E[u|Education] = 0.

- *u* is denoted the *error term*.
- This model is known as *The Simple Regression Model*.
- It is linear in the parameters β_0 and β_1 .

The Nature of Econometrics and Economic Data The Question of Causality

The estimate of β_1 , is the return to education, but can it be considered causal?

- We would like to prove that the effect is causal.
- However it is impossible to prove causality. If $\beta_1 \neq 0$ and we have a sound theoretical economic argument, this might indicate that there is a causal relation. However this is far from being a proof.

The Nature of Econometrics and Economic Data Misspecification Testing

Major challenges:

- Inference procedures depend of the characteristics of the distribution of *u* given *Education*.
- The model

$$Wages = \beta_0 + \beta_1 Education + u$$

might be misspecified.

• Confounding Effects (omitted factors): for instance

$$Wages = \beta_0 + \beta_1 Education + \beta_2 Experience + u$$

Endogeneity.

David Hendry's 3 Golden rules of Econometrics:

- Test.
- Test.
- Test.

The Nature of Econometrics and Economic Data Types of Data

- Cross Sectional.
- Time Series.
- Panel

Types of Data – Cross Sectional

- Cross-sectional data is usually a random sample.
- Each observation is a new individual, household, firm, etc.. with information at a point in time.
- **Examples:** Data on expenditures, income, hours of work, household composition, assets, investments, employment, etc..
- If the data is not a random sample, we have a sample-selection problem.

Types of Data – Cross Sectional

A Cross-Sectional Data Set on Wages and Other Individual Characteristics

obsno	wage	educ	exper	female	married
1	3.10	11	2	1	0
2	3.24	12	22	1	1
3	3.00	11	2	0	0
4	6.00	8	44	0	1
5	5.30	12	7	0	1
:	:	;	1	:	1
525	11.56	16	5	0	1,
526	3.50	14	5	1	0

The Nature of Econometrics and Economic Data Types of Data - Time Series

- Time series data has a separate observation for each time period.
- Typically Macroeconomic measures: GDP, Inflation, Prices, Exchange Rates, Interest Rates, etc..
- Financial data: Stock Prices, Bonds and other financial instruments at frequencies that range from minute to minute up to annual (useful to analyse financial markets).
- Since not a random sample, different problems to consider.
- Trends and seasonality will be important.

The Nature of Econometrics and Economic Data Types of Data – Time Series

Minimum	Wage.	Unemployment.	and	Related	Data	for	Puerto	Rico

obsno	year	avgmin	avgcov	unemp	gnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
:	i.	:	ŧ	:	:
37	1986	3.35	58.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7

The Nature of Econometrics and Economic Data Types of Data - Panel

- Can follow the same random individual observations over time known as panel data or longitudinal data.
- Used to study dynamic aspects of household and firm behaviour and to measure the impact of variables that vary predominantly over time.

The Nature of Econometrics and Economic Data Types of Data – Panel

A Two-Year Panel	Data Set	on City	Crime Statistics
------------------	-----------------	---------	------------------

obsno	city	year	murders	population	unem	police
1	1	1986	5	350000	8.7	440
2	1	1990	8	359200	7.2	471
3	2	1986	2	64300	5.4	75
4	2.	1990	1	65100	5.5	75
:	:	:	:	:	:	:
297	149	1986	10	260700	9.6	286
298	149	1990	6	245000	9.8	334
299	150	1986	25	543000	4.3	520
300	150	1990	32	546200	5.2	493

The Simple Regression Model - Introduction

$$E[y|x] = \beta_0 + \beta_1 x$$

or equivalently

$$y = \beta_0 + \beta_1 x + u,$$

$$E[u|x] = 0.$$

In the model:

- β_0 is known as the *intercept parameter* or *constant term*.
- β_1 is known as the *slope parameter*.

The Simple Regression Model - Introduction

Terminology for Simple Regression

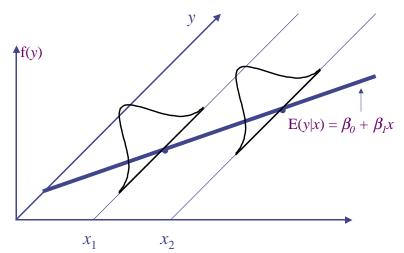
у	x
Dependent variable	Independent variable
Explained variable	Explanatory variable
Response variable	Control variable
Predicted variable	Predictor variable
Regressand	Regressor

$$\begin{array}{rcl} y & = & \beta_0 + \beta_1 x + u, \\ E\left[u|x\right] & = & 0. \end{array}$$

- $\beta_0 + \beta_1 x$ is the *systematic part* of *y*.
- u, the error term, is the *unsystematic part* of y.

The Simple Regression Model - Introduction

E(y|x) as a linear function of x, where for any x the distribution of y is centered about E(y|x).



The Simple Regression Model -Ordinary Least Squares (OLS)

Basic idea of regression is to estimate the population parameters from a sample.

- Let $\{(x_i, y_i) : i = 1, ..., n\}$ denote a random sample of size n from the population.
- For each observation in this sample, it will be the case that

$$y_i = \beta_0 + \beta_1 x_i + u_i.$$

• To derive the OLS estimates we need to realize that our main assumption of E(u|x) = 0 also implies that

$$E(u) = 0,$$

$$Cov(x, u) = E(xu) = 0.$$

- Why? Because of the *Law of Iterated Expectations*.
- Proof:

$$E(u) = E[E(u|x)]$$

$$= E(0)$$

$$= 0.$$

Proof (cont):

$$Cov(x,u) = E(xu) - E(x)E(u)$$

$$= E(xu) - E(x) \times 0$$

$$= E(xu)$$

$$= E[E(xu|x)]$$

$$= E[xE(u|x)]$$

$$= E[x \times 0]$$

$$= E(0)$$

$$= 0.$$

The Simple Regression Model -Deriving OLS Estimates

We can write our 2 restrictions just in terms of x, y, β_0 and β_1 , since $u=y-\beta_0-\beta_1 x$:

$$E(y - \beta_0 - \beta_1 x) = 0,$$

$$E[x(y - \beta_0 - \beta_1 x)] = 0.$$

These are called *moment restrictions*.

• We use the *Method of moments* to propose an estimator for the parameters β_0 and β_1 . The moment restrictions

$$E(y - \beta_0 - \beta_1 x) = 0,$$

$$E[x(y - \beta_0 - \beta_1 x)] = 0,$$

correspond to population means of random variables. Hence the estimator suggested by the Method of Moments is obtained if we replace population means by sample means.

• What does this mean? Recall that for E(X), the mean of a population distribution, a sample estimator of E(X) is simply the arithmetic mean of the sample $\bar{X} = \sum_{i=1}^{n} X_i/n$.

The Simple Regression Model -Deriving OLS Estimates

• The moment restrictions in the population:

$$E(y - \beta_0 - \beta_1 x) = 0,$$

$$E[x(y - \beta_0 - \beta_1 x)] = 0.$$

 We want to choose values of the parameters that will ensure that the sample versions of our moment restrictions are true. The sample versions are as follows:

$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0, \tag{1}$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0.$$
 (2)

The OLS estimator is given by the pair $(\hat{\beta}_0, \hat{\beta}_1)$ that solves these equations.

The Simple Regression Model -Deriving OLS Estimates

Solving equation (1) we have

$$0 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_i - \frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_0 - \frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_1 x_i,$$

$$= \bar{y} - \frac{1}{n} \left(\underbrace{\hat{\beta}_0 + \hat{\beta}_0 + \dots + \hat{\beta}_0}_{n \times} \right) - \hat{\beta}_1 \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$= \bar{y} - \frac{n}{n} \hat{\beta}_0 - \hat{\beta}_1 \bar{x}$$

$$= \bar{y} - \hat{\beta}_0 - \hat{\beta}_1 \bar{x},$$

where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ and $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, Therefore

$$\bar{y} - \hat{\beta}_0 - \hat{\beta}_1 \bar{x} = 0,$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Plugging (3) into (2) we have

$$0 = \frac{1}{n} \sum_{i=1}^{n} x_{i} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i})$$

$$= \sum_{i=1}^{n} \left[y_{i} - (\bar{y} - \hat{\beta}_{1} \bar{x}) - \hat{\beta}_{1} x_{i} \right] x_{i}$$

$$= \sum_{i=1}^{n} \left[y_{i} - \bar{y} + \hat{\beta}_{1} \bar{x} - \hat{\beta}_{1} x_{i} \right] x_{i}$$

$$= \sum_{i=1}^{n} \left[(y_{i} - \bar{y}) + \hat{\beta}_{1} (\bar{x} - x_{i}) \right] x_{i}$$

$$= \sum_{i=1}^{n} \left[(y_{i} - \bar{y}) x_{i} + \hat{\beta}_{1} (\bar{x} - x_{i}) x_{i} \right]$$

$$= \sum_{i=1}^{n} x_{i} (y_{i} - \bar{y}) - \sum_{i=1}^{n} \hat{\beta}_{1} x_{i} (x_{i} - \bar{x})$$

$$= \sum_{i=1}^{n} x_{i} (y_{i} - \bar{y}) - \hat{\beta}_{1} \sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})$$
which leads to $\hat{\beta}_{2} = \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i} (y_{i} - \bar{y})}{\frac{1}{n} \sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})} = \frac{\sum_{i=1}^{n} x_{i} (y_{i} - \bar{y})}{\sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})}.$

The Simple Regression Model -Deriving OLS Estimates

We prove now that

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} (y_{i} - \bar{y})}{\sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y}) = \sum_{i=1}^{n} [x_{i} (y_{i} - \bar{y}) - \bar{x} (y_{i} - \bar{y})]$$

$$= \sum_{i=1}^{n} x_{i} (y_{i} - \bar{y}) - \sum_{i=1}^{n} \bar{x} (y_{i} - \bar{y})$$

$$\sum_{i=1}^{n} \bar{x} (y_{i} - \bar{y}) = \bar{x} \sum_{i=1}^{n} (y_{i} - \bar{y})$$

$$= \bar{x} \left[\sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \bar{y} \right]$$

$$= \bar{x} \left[n \frac{1}{n} \sum_{i=1}^{n} y_{i} - \left(\frac{\bar{y} + \bar{y} + \dots + \bar{y}}{n \times} \right) \right]$$

$$= \bar{x} [n \bar{y} - n \bar{y}]$$

$$= 0$$

The Simple Regression Model -Deriving OLS Estimates

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})$$

$$= \sum_{i=1}^{n} [x_i (x_i - \bar{x}) - \bar{x} (x_i - \bar{x})]$$

$$= \sum_{i=1}^{n} x_i (x_i - \bar{x}) - \sum_{i=1}^{n} \bar{x} (x_i - \bar{x})$$

$$\sum_{i=1}^{n} \bar{x} (x_i - \bar{x}) = \bar{x} \sum_{i=1}^{n} (x_i - \bar{x})$$

$$= \bar{x} \left[\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \bar{x} \right]$$

$$= \bar{x} \left[n \frac{1}{n} \sum_{i=1}^{n} y_i - \left(\underbrace{\bar{x} + \bar{x} + \dots + \bar{x}}_{n \times} \right) \right]$$

$$= \bar{x} [n \bar{x} - n \bar{x}]$$

$$= 0.$$

The Simple Regression Model -Deriving OLS Estimates

The solution of this system of equations is given by

$$\begin{array}{lcl} \hat{\beta}_{0} & = & \bar{y} - \hat{\beta}_{1}\bar{x}, \\ \hat{\beta}_{1} & = & \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}, \end{array}$$

where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$, $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, and it is assumed that $\sum_{i=1}^{n} (x_i - \bar{x})^2 > 0$.

The residual is defined as $\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$.

The Simple Regression Model -Alternative approach to derivation

- There is an alternative justification for this estimator that justifies its name.
- This estimator is known as Ordinary Least Squares estimator because it is fitting a line through the sample points such that the mean of squared residuals is as small as possible.
- Consider the function

$$S = \frac{1}{n} \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2.$$

- This function takes its minimum when $b_0 = \hat{\beta}_0$ and $b_1 = \hat{\beta}_1$.
- To see this notice that by using calculus to solve the minimization problem for the two parameters you obtain the following first order conditions:

$$\begin{cases} \frac{\partial S}{\partial b_0} = -\frac{2}{n} \sum_{i=1}^n (y_i - b_0 - b_1 x_i) = 0\\ \frac{\partial S}{\partial b_1} = -\frac{2}{n} \sum_{i=1}^n x_i (y_i - b_0 - b_1 x_i) = 0 \end{cases}.$$

• These conditions are the same as we obtained before, multiplied by -2. Hence the solution is the same: $b_0 = \hat{\beta}_0$ and $b_1 = \hat{\beta}_1$

The Simple Regression Model -Some definitions

• The the *fitted values* are defined as

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i,$$

$$i = 1, ..., n$$
.

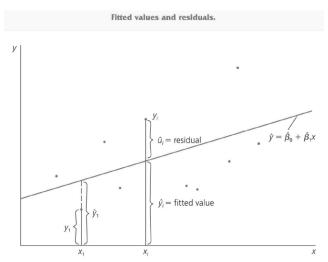
• The *residual*, \hat{u}_i is the difference between the sample point and the fitted line (sample regression function)

$$\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i
= y_i - \hat{y}_i,$$

$$i = 1, ..., n$$
.

The Simple Regression Model -Some definitions

Sample regression line (fitted values), sample data points and the associated estimated error terms:



Note the differences:

• Population regression line

$$E\left[y_i|x_i\right] = \beta_0 + \beta_1 x_i$$

i = 1, ..., n.

• Sample regression line (fitted values)

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i,$$

i = 1, ..., n.

A Note on Terminology: Often we indicate that the equation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i,$$

i = 1, ..., n, was obtained by OLS by saying that we run a regression of y on x, or that we regress y on x.

The Simple Regression Estimates

Example:

• Regression of Wages on Education

Dependent valiable: Wages

Estimation Method: Ordinary Least Squares

Sample size: 528

Regressors	Estimates
Intercept	-1.60468
Education	0.81395

The Simple Regression Estimates

Hence the fitted values are equal to

$$\widehat{Wages} = -1.60468 + 0.81395 \times Education.$$

Interpretation:

- This means that one extra year of schooling increases the average hourly wages by \$0.81395.
- The results should be interpreted with caution as the intercept of -1.60468 means that the average hourly wages of people with no education is -1.60468 which does not make sense. In the sample we do not have people with less than 6 years of education and in this case $\widehat{Wages} = -1.60468 + 0.81395 \times 6 = 3.279$.

The Nature of Econometrics and Economic Data The Simple Regression Estimates

Scatterplot and the sample regression line - Hourly wages (in dollars)

